
ED 370 437

AUTHOR
TITLE

INSTITUTION
REPORT NO
PUB DATE
NOTE
AVAILABLE FROM

PUB TYPE

EDRS PRICE
DESCRIPTORS

ABSTRACT

DOCUMENT RESUME

FL 022 218

Lee, Kang-Hyuk
P-KIMMO: A Prolog Implementation of the Two Level
Model.
Illinois Univ., Urbana. Language Learning Lab.
LLL-TR-T-18-91
Mar 91
38p.
Language Learning Laboratory, University of Illinois
et Urbana-Champaign, G70 Foreign Languages Building,
707 S. Mathews, Urbana, IL 61801.
Reports Descriptive (141)

MF01/PCO2 Plus Postage.
*Authoring Aids (Programming); *Computational
Linguistics; *Computer Software; Microcomputers;
*Morphology (Languages); *Structural Analysis
(Linguistics)

Implementation of a computer-based model for
morphological analysis and synthesis of language, entitled P-KIMMO,
is discussed. The model was implemented in Quintus Prolog on a Sun
Workstation and exported to a Macintosh computer. This model has two
levels of morphophonological representation, lexical and surface
levels, associated by morphophonological rules that specify
legitimate pairs of characters. The description offered here focuses
on aspects of implementation only and not underlying theory.
Components of the program are described, including structure of the
lexicon, use of finite state automata to encode two-level rules, and
the recognizer/generator algorithm. This version of the program is
then compared and contrasted with a previously implemented version.
Finally, procedures for use of the program on the UNIX and Mackintosh
computers are outlined, with some screen illustrations. A brief
bibliography is included, and a source listing of the P-KIMMO system
is appended. (MSE)

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *

Language Learning Laboratory

TECHNICAL REPORT NO. LLL-T-18-91
MARCH 1991

The School of Humanities

University of Illinois
at Urbana-Champaign

P-KIMMO: A PROLOG IMPLEMENTATION OF THE TWO LEVEL MODEL

KANG-HYUK LEE

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research aria improvement
EDUCATIONAL RESOURCES INFORMATION

CENTS R IERICI
*nis document has been reprodur ed asreceived from the person or nrganualion

originating it

Minor changes have been rnade lo improvereproduLhon qualil

Pornts of view or opinions staled in tnis
menl do nol necessarily represent official
OUP posilion or policy

"PERMISSIoN
TO REPRODUCE

THISMATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL
RESOURCESINFORMATION

CENTER (ERIC)."

HEST COPY AVAILABLE

LANGUAGE LEARNING LABORATORY
College of Liberal Arts and Sciences
University of Illinois at Urbana-Champaign

Technical Report No. LLL-T-18-91

P-KIMMO:
A PROLOG IMPLEMENTATION OF THE TWO LEVEL MODEL

Kang-Hyuk Lee

Research Assistant, Language Learning Laboratory
Grac ate Student, Department of Linguistics

March, 1991

Available from: Language Learning Laboratory, University of Illinois at Urbana-Champaign,
G70 Foreign Languages Building, 707 S. Mathews, Urbana, Illinois 61801

3

1.

1. Introduction

This report de.:^ribes a Prolog implementation of the two-level model
for morphological analysis and synthesis developed by Kimmo Koskenniemi
(1983). The two level model was originally implemented in Pascal by
Koskenniemi himself. Karttunen and his students developed a LISP implemen-
tation, which was named "KIMMO" after its originator. Their work was pub-
lished in "Texas Linguistic Forum" (1983). A Prolog implementation of the
formalism was done by Boisen (1988). A comparison between the two Prolog
implementations will be given in section 4. Quite recently, a C implementation
by Antworth (1990) has been commercially available. Some testing results are
also given in section 4.

The two-level system described in this report, which I will call "P-
KIMMO" has been implemented in Quintus Prolog on a Sun Workstation, and
exported to the Macintosh computer. An additional routine which harnesses
P-KIMMO with a menu-driven user interface was written for the Macintosh
version (see section. 5.2). The source code is listed in the appendix of this
report. It can also be obtained as an ASCII file on a Macintosh formatted 3 1/2"
disk. Requests should be sent to:

Kang-Hyuk Lee
Department of Linguistics
University of Illinois
4088 Foreign Languages Building
707 S. Mathews
Urbana, IL 61801

E-mail: klee@lees.cogsci.uiuc.edu

The current version of P-KIMMO has been integrated into the UNICORN
natural language processing system (Gerdeman and Hinrichs 1988) as the
morphological component. Research is ongoing to empower P-KIMMO to do
morphological analysis with an on-line dictionary.

2. The Two-Level Formalism

Since the purpose of this report is to describe the implementational
aspects of P-KIMMO, I will not attempt to provide a detailed description of the
two-level formalism. Rather, I refer the reader to Koskenniemi (1983) for the
full exposition of the formalism. Karttunen (1983) also is a valuable source.
The description given in this section is intended for those who are not familiar
with the two-level formalism so that they get the flavor of it.

As suggested in its nomenclature, the two-level model has two levels of
morphophonological representations: the lexical level and surface level.
These two levels are associated by morphophonological rules which specify
legitimate pairs of characters, as illustrated in figure 2.1.

1
4

lexical: s p y

two-level rules

surface: spie

Figure 2.1

The general format of two level rules is given in figure 2.2. CP which stands
for "correspondence" refers to a lexical/surface pair. LC and RC refer to the
left and right environment, respectively. *OP* is a logical operator which is
instantiated as <--> ("if and only if") in many cases.' What this operator says is
that CP is obligatory in the given context and is possible only in that con'ext.
Note that LC and RC also are character pairs.

CP *OP* LC RC

Figure 2.2: The general format of two-level rules

The two-level rule that legitimizes the y/i pairs (or, the y/i alternation in
generative-phonological parlance) in figure 2.1 can be put in prose as follows
(cited from Karttunen and Wittenburg 1983).

Y-replacement: y/i <--> C +/= fi, a)

After a consonant, lexical y corresponds to i
when a lexical suffix marker and any rair
other than i/i or a/a follows; to y elsewhere.

Figure 2.3

The capital "C" stands for all tht. consonant pairs. "+/=" abbreviates the pairs
consisting of the suffix marker plus any character.2 To sum up, two-level
rules express correspondences between lexical and surface forms. This corre-
spondence relation between two characters is a major departure from tradi-
tional generative phonology and characteristic of two-level rules.

3. Components of P-KIMMO

3.1. Lexicon

As in other implementations of two-level morphology, a lexicon is
represented in the form of a letter tree in order to gain efficient lexical

'In Koskennierni (1983: sec. 2.3.9), this operator is interpreted as the combination of the
two operators, namely, --> and <-- which means "only if" and "if", respectively.
2These abbreviatory conventions make the two-level rules of a language and the corre-
sponding finite state automata more compact and easy to read. See section 3.2.

2 5

access.3 For example, an English lexicon that contains the words be, beer,
believe, big, and boy is roughly represented as follows:

e r

e 1 i e v e

b i g

o y

Figure 3.1: The Lexical Tree

The last character of each word in the tree is associated with lexical entries.
The b-e-e-r branch, for example, carries the entry for be at the e and the
entry for beer at the r. b and the third e do not have any lexical specifications
because b and bee are not words in this sample lexicon. In the current version
of P-KIMMO, a lexical entry is a list consisting of a continuation class and a
feature description. The empty list symbol is used for indicating characters
devoid of lexical entries. Figure.3.2 shows the actual machine-readable format
of the lexical tree in figure 3.1. Notice that the copular verb be has multiple
entries.

[("b", [],
[re", [[#, "AUX"), [ivl, ""]],

[re", M,
[Cr", Hh, "II, mn,

H.
[Ce",

Wv",
[Ce", "lL HM]fl)))1),

("i" , El ,WWI, Ha, "um, [1m),

("0", [],
[("y", ""1], (1)])])]

Figure 3.2:
Pretty-printed list representation of the lexical tree

alternation(a, [ca, cs]).
alternation(ivl, [pr, i, ag, ab]).

Figure 3.3:
Possible expansions of the continuation classes "a" and "ivl"

The symbols #, ivl, n, v, and a are continuation classes which allow the
recognizer to select the possible affixes. For example, the continuation class a
has the comparative (ca) +er and superlative (cs) +est as its members, as shown
in figure 3.3, which make possible to analyze words like bigger and biggest. #

3Although it is common practice to represent lexicons as lexical trees, it is controversial
whether the tree representation is appropriate for modelling human performance. See
Forster (1976) for some arguments against "lexical trees" from psycholinguistic perspec-
tives.

3 6

indicates termination, so no continuation is permitted. This shows that the
continuation of a lexical formative is specified in its lexical entry, and thus
how morphotactics is described in the two-level formalism.

Although the tree format increases the efficiency of lexical access, it is
very laborious and error-making to encode a lexical tree by hand, since it
requires extremely careful arrangements of parentheses and brackets.
Indentation for increasing readability would also be a tedious job. The prob-
lem would be much more serious if one wanted to build a large lexicon. It is
almost impossible for the human eye to trace down the number of parentheses
and brackets needed to properly enclose a big lexical tree. This bulkiness of
the lexical tree also makes it difficult to augment the lexicon with new words.

As in KIMMO, a lexicon compiler has been added to the P-KIMMO system
which automatically builds the corresponding lexical tree from an easy-
formatted dictionary (called "EZ-Lexicon"). An EZ-Lexicon consists of Prolog
clauses each of which contains a lexical string and information relevant to
that lexical item (i.e. continuation class and features). The EZ-Lexicon corre-
sponding to the English lexical tree above is given in figure 3.4.

lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,

"be", [[t, "AUX"], [ivl, ""]]).
"beer", [(n, ""]]).
"believe", [[v,

"big", [[a, ""]]).
[(n, ""11).

Figure 3.4 A Sample EZ-Lexicon of English

The tree-building program reads an EZ-Lexicon file and writes the
corresponding lexical tree to a designated output file. The lexical tree is also
saved in the pretty-printed format as in figure 3.2.

There is another motivation for which the lexicon compiler has been
developed. As mentioned in section 1, an effort is being made to augment P-
KIMMO by making it capable of doing morphological analysis with an on-line
dictionary. It is very unlikely, however, that on-line dictionaries are orga-
nized in such a way that P-KIMMO can make direct use of them. One way to
make P-KIMMO run on such a dictionary would be to modify the recognition
algorithm so that it could consult the original dictionary format. Above all,
this obviously would lead to the loss of efficient lexical access. Since on-line
dictionaries are usually huge in size, it is not hard to imagine that the process
time would increase significantly. For this reason, the preprocessing of a
dictionary--i.e. building the lexical tree from a dictionaryhas been chosen to
achieve the goal.

3.2. Rules As Finite State Automata

The most innovative feature of Koskenniemi's model is the use of finite
state automata to encode two-level rules.4 This is why two-level morphology is
often referred to as "finite state morphology". The utilization of finite state
automata explains why the processor is. so efficient. It is well-known that
finite state machines are computationally efficient and easy to implement.
The finite state transducer behaves in exactly the same way as the ordinary

4Precisely speaking, finite state "transducers" in the sense that the input symbols are a
pair of characters, rather than a single symbol.

finite automaton except that it reads a pair of input symbols. As shown in
figure 3.4, a pair of characters is the input to the transducer, which is cur-
rently scanning the "yi" pair.

I
Is

I + s

FSD

Figure 3.4

upper tape

lower tape

The English rule that expresses the y/i alternation can be depicted by a tran-
sition network diagram. Figure 3.5 is the graphical representation of the Y-
spelling rule for English given in Karttunen and Wittenburg (1983).

Figure 3.5

On the implementational side, finite state automata arc represented as
state transition tables. Figure 3.6 shows the tabular form of the Y-spelling
rule. The full-fledged machine is presented in the appendix. The internal
structure of the automata in P-KIMMO is somewhat different from the one in

5

KIMMO (i.e. the LISP version). It is also slightly different from Boisen's Pro-
KIMMO.

[(y_spelling, [true,true,false,false,true,false]),
("CC", [2,2,0,1,1,0]),
("yy", [1,5,0,1,1,0]),

, [0,3,0,0,0,0]),
("+=", [1,1,4,1,6,0]),
("ii", [1,1,0,0,1,1]),
("aa", [1,1,0,0,1,1]),
("==", [1,1,0,1,1,0])]

Figure 3.6: Y-spelling automaton for English

A transducer is encoded as a list whose member in turn is a LISP-like list con-
sisting of a character pair and a transition list, except that the first member
has the rule name (i.e. y_spelling) in the place of a character pair. "true"
indicates a final state. The Y-spelling transducer has states 1, 2, and 5 as its
fmal states. 0 means failure. An outgoing state is implicit in .the sequential
order of a state list, and an incoming state is represented as a member of the
transition list. Taking the "yy" pair as an example, if the outgoing state is 2,
the incoming state is set to state 5. The pair "CC" is an abbreviation for all the
consonant pairs that .are not "specified" in the automaton. Thus, the "CC" pair
in the Y-spelling automaton stands for all the consonant pairs except for "yy".
Theoretically, "CC" includes any possible combination of consonants such as
"fv", "zs", "bp", and so on. The abbreviatory conventions are not interpreted
that way, however. Their interpretation varies depending on the rules of a
language. For example, the schematic pair "CC" includes a pair like "fv", only
if it is "specified" in some other rule. The symbol "=" could be thought of as a
wildcard which represents any characters. It roughly corresponds to
"elsewhere condition" in phonological terms. Taking the Y-spelling rule
again as an example, "==" stands for all the pairs other than the pairs specified
and subsumed by more "specific" schemata (in this particular case, "+=" and
"CC") in the automaton. This "specificity hierarchy" is another crucial factor
to interpret two-level rules/automata. Since these notational conventions are
very important to understand the two-level formalism, I refer the reader to
Koskenniemi (1983) and Karttunen (1983) for detailed description.

As in Karttunen and Wittenburg (1983), each automaton in P-KIMMO
has been hand-coded, which, of course, is very tedious. Along the lines of
Koskenniemi (1985), a program that compiles automata directly from two-level
rules is under development.

3.3. Compiler

Although the finite state automata described in the previous section are
machine-readable, they are not the real data structures that the recognition/
generation algorithm of P-KIMMO runs off. In the LISP implementation of
Gajek et al. (1983), finite state automata are compiled into two data structures
called R-MACHINE and G-MACHINE which are used for recognition and
generation, respectively. These data structures enable the recognizer and the
generator to access finite state automata more efficiently. P-KIMMO basically
adopts the same idea, but thc data structures created by the Prolog version of

6 9

the compiler are different from those presented in Gajek et al. In P-KIMMO,
there is no distinction between R- and G-MACHINE. Rather, a single machine
produced by the P-KIMMO compiler, which I call simply MACHINE, serves as
both R- and G-MACHINE. The ability to use a single machine for both recogni-
tion and generation is due to Prolog's inherent aspect, namely,
"rev ersibility".5 The availability of a single machine would make the system
more compact, since we do not have to maintain two data structures that are
fltructurally identical except that one is accessed by the recognition algorithm
and the other by the generation algorithm.

In P-KIMMO, MACHINE can be either asserted in the dynamic database
or saved as a file by the compiler. Saving MACHINE as a database file would be
a better choice if the user works with a complete set of automata. The recog-
nition/generation algorithm runs much faster with a separate MACHINE file.
This is due to the fact that using "pure" data structures generally increases the
efficiency of a program. Adding MACHINE to the database would be useful if
one still needs to debug the finite state machine he is working on. Otherwise,
one has to save MACHINE each time he wants to test it. A fragment of MACHINE
for English is given in figure 3.7.

machine("aa.", [[(1,1)] ,
[(1,1),(5,1),(6,1),(7,1)1,
((1,2),(2,1),(3,1),(5,1),(7,1),(8,1),
(11,1),(14,1),(15,1)],

[(1,1),(2,1),(3,1),(4,1)1(6,1)],
[(1,4), (2,1)1(4,16),(5,16),(6,16),(7,16),(8,16),(9,16),
(10,16),(11,16),(12,16),(13,16),(14,16),(15,16),(16,16)],

[(1,1),(2,1),(5,1),(6,1)]]).
machinerbb", [[(1,1)] ,

[(1/1)/(5,1),(6,1)/(7/1)],
[(1/5), (2,1)/(3/5), (511),(7/1)/ (9,1),
(11,1),(14,1)1(15,1)],

[(1,1),(2,1),(3,1),(4,1),(6,1)],
[(1,1),(4,5),(5,16),(6,16),(7,16),(8,16),(9,16),(10,16),
(11,16),(12,16),(13,16),(14,16),(15,16),(16,16)],

[(1,2),(2,2),(4,1),(5,1)]]).

Figure 3.7

A machine clause carries two arguments: a pair of characters (lexical and
surface in that order) and a list whose member is again a LISP-like list consist-
ing of the outgoing and incoming state. Each state list of a machine clause
specifies the possible states the current character pair could go through. Each
machine clause in figure 3.7 has six state lists which correspond to six
morphophonological rules of English (see Appendix). An important thing to
note is that when the recognizer or generator is invoked, all the six state lists
are checked to see if the character pair at hand is licensed by them. If any
one of the state lists blocks the pair, then the process will fail. Although all
the state lists (i.e. all the rules) are checked when MACHINE receives an input
pair, this is done in a serial way (cf. Karttunen 1983, section 4.1). This is wh:,
Karttunen (1983) and Gajek et al. (1983) mention the merge of separate
machines into a single finite state machine (called BIGMACHINE) which makes

5This non-deterministic programming technique is also closely related to the recogni-
tion/generation algorithm. See section 3.4 below.

7 10

the process more efficient. Karttunen (1983) gives an algorithm to merge
transducers into a single equivalent transducer. The program merging trans-
ducers is also currently under development.

3.4. Recognizer and Generator

The recognition/generation algorithm is the workhorse of P-KIMMO.
The reader interested in the algorithm itself is referred to Koskenniemi (1983)
and Karttunen (1983), though they are not easy to follow at all. The recogni-
tion/generation algorithm of P-KIMMO is close to the one described in
Karttunen (1983) in that it adopts the "depth-first" control strategy. In
Koskenniemi's (1983) original implementation, the algorithm operates in the
"breadth-first" manner. In this section, I will briefly mention a characterstic
of the recognition/gereration algorithm which distinguishes P-KIMMO from
the previous implementations.

The previous implementations of the two-level model usually have two
separate routines for recognition and generation. The main difference
between the two is that the former is driven by the lexicon, whereas the latter
is not. In P-KIMMO, there is no distinction between the recognition and
generation algorithm. What this means is that a single algorithm serves for
both recognition and generation. A single routine for both recognition and
generation is the result of taking advantage of the non-deterministic
programming technique of Prolog. In a nutshell, recognition is nothing more
than the "reverse" mode of generation, and vice versa. A consequence of
using a single algorithm is that the lexicon is also consulted during genera-
tion. This prevents the generator from accepting garbage inputs--i.e. non-
words or combination of non-words.6 If the generator is not guided by the
lexicon, every garbage input would be accepted as long as it satisfied the
morphophonological conditions of the language. In some domains of applica-
tion, however, it is quite plausible that one wants to use the system to parse
non-words. It would be especially useful when one wished to store unknown
words to augment the existing lexicon. As a matter of fact, P-KIMMO includes a
separate generation routine for these purposes, which makes P-KIMMO more
flexible, although it is not listed in the appendices.

4. Evaluation of P-KIMMO

Implemented in Prolog, it is quite natural that P-KIMMO and Boisen's
Pro-KIMMO have many things in common. For example, The lexical format of
the two systems is strictly identical. The way to encode finite state automata is
also very similar. Nevertheless, the two implementations are substantially
different at least in one resrct. This section briefly discusses the crucial
difference which, I believe, renders P-KIMMO superior to Pro-KIMMO.

Although Boisen (1988) alludes to creating new data structures out of
finite state automata, he does not spell out what type of data structures his
recognition algorithm uses. It seems obvious, however, that his algorithm
does not make use of data structures of the kind described in section 3.3. I

strongly believe that this is why it took his recognizer more than a minute to

6By "non-words", I mean strings that are not listed in the dictionary.

8 1 1

analyze the Japanese word kattemita.7 Surprisingly enough, P-KIMMO
consumed only 0.3 second to recognize the same word, which is significantly
fast, compared to Pro-KIMMO. Of course, the speed heavily depends on the
computer used for the test. The CPU time consumed by P-KIMMO to recognize
kattemita has been calculated on a Sun Workstation which is quite fast.
However, the result of running P-KIMMO on a modest Macintosh SE still
proves that Pro-KIMMO is painfully slow. It didn't take more than a couple of
seconds to process the same word on an SE. The data structures are not the
only factor that slows things down.8 As a matter of fact, Boisen attributes Pro-
KIMMO's inefficiency to possible continuation classes the recognizer has to go
through.9 Given the same complexity caused by continuation classes, how-
ever, the unrealistic speed of Pro-KIMMO should be explained otherwise. This
is why I believe that everything else being equal, P-KIMMO's superiority over
Pro-KIMMO is due to the optimized data structures."

Quite recently, a C implementation of the two level model for personal
computers, thus dubbed PC-KIMMO (version 1.0.3) has been made available.
Roughly speaking, the system structure of PC-KIMMO is almost identical with
P-KIMMO except that it was written in C. Thus, it is not possible to compare the
two systems in terms of control strategy, data structures, and so on. I will only
mention some timing results from testing the two systems. To test PC-KIMMO,
the C source code was compiled on a Unix machine. The timing has been done
on a Sun workstation. In the recognition mode, PC-KIMMO is slightly faster
(but not always! For some test inputs like dying and spies, P-KIMMO was faster
by 0.00x) than P-KIMMO by 0.0x second or 0.00x (x usually ranges from 1 to 5),
while in the generation mode, P-KIMMO (unexpectedly) performs better by
the same degree.

Given that P-KIMMO is a little slower (but not significantly) than PC-
KIMMO in recognizing words, the question is whether there is a way to im-
prove the recognition speed of P-KIMMO. Since Prolog lacks data types such as
arrays in conventional programming languages, the consulting time of state
transition tables grows linearly to the size of the tables. This goes against the
spirit of the two-level model in which the complexity of rules does not have
any significant effect on processing time (cf. Karttunen 1983). A lot of
attempts have been made to improve this defect of Prolog by simulating data
types such as hash tables (cf. O'Keefe 1990). I believe that further optimization
of data structures (e.g. The conversion of state transition lists into Prolog
terms would make it possible to pick the desired state transition immediately by
its argument position.), which is currently being under study, could improve
the performance of P-KIMMO. However, even with somewhat defective data
structures, P-KIMMO is efficient enough to compete with rapid systems like PC-
KIMMO.

7As in Boisen (1988), I assume the two-level description of Japanese in Alam (1983).
8There are several overheads for the two-level model in general. For example, the traver-
sal of the lexical tree is futile in many cases. Consult Barton et al. (1985) for the general
discussion of problems with the two-level formalism.
9See section 3.2.3 of Boisen (1988) for Prolog-related problems in implementing two-level
morphology.
1 °Since Boisen (1988) lacks the description of the implementational aspects of his sys-
tem, the comparison given here cannot be considered as empirical results.

9 1 2

5. Using P-KIMMO

5.1 Running P-KIMMO on the UNIX computer

Before running the recognizer and generator, the user needs to convert
the finite state automata of a specific language into the suitable data structures
(i.e. MACHINE). To compile automata, type "compile.". Then, the user is
prompted to enter the file name that contains the finite state automata of the
language the user has in mind.

I? compile.

Input filename?
I: 'english.aut'.

Output filename?
I: 'machine.eng'.

figure 5.1

To call up the system, all the user has to do is just to type "kimmo." at the
prompt (Be sure not to omit the period!). That command will automatically load
all the relevant files. Then, the user is again prompted to enter the data files
(i.e. the MACHINE and the lexicon) he wants to examine.

I?- kimmo.

Which machine?
I: 'machine.eng'.

Which dictionary?
I: 'english.lex'.

Welcome to P-KIMMO !!!

Copyright (C) 1991 by Kang-Hyuk Lee. All rights reserved.

Figure 5.2

Now, P-KIMMO is ready to run. Figure 5.3 and 5.4 show the sample inputs and
outputs for recognition and generation, respectively.

I ?- recognize("dying").

Recognized string: die+ing
Categories: [root,pr]
Feature(s): V PROG

RECOGNITION TIME = 0.05 sec.

yes

1 0

1 3

I ?- recognize("died").

Recognized string:
Categories:
Feature(s):
Recognized string:
Categories:
Feature(s):

die+ed
[root,ps]

PAST
die+ed
[root,pp]

PAST PRT

RECOGNITION TIME = 0.117 sec.

yes
I ?- recognize("referring").

Recognized string:
Categories:
Feature(s):

re'fer+ing
[root,pr]

PROG

RECOGNITION TIME = 0.1 sec.

yes

Figure 5.3

I ?- generate("die+ing").

Generated String: dying

GENERATION TIME = 0.183 sec.

yes
I ?- generate("die+ed").

Generated String: died

GENERATION TIME = 0.033 sec.

yes
I ?- generate("re-fer+ing").

Generated String: referring

GENERATION TIME = 0.0669999 sec.

yes

Figure 5.4

When the recognizer is invoked, it displays the lexical string of the input, the
category names of the elements involved during recognition, features of these
categories, and finally the CPU time for recognition. For example, the surface
string dying is analyzed as combining the root category die with the mor-
pheme (i.e. "pr") ing ("+" indicates morpheme boundary). "V" and "PROG"
stand for "verb" and "progressive", respectively. The generator only returns
the surface string of the input and generation time.

As mentioned in the previous section, another mode of P-KIMMO is
available which is suitable for the development of a new machine and dic-

11 14

tionary. The tracing facility is also being implemented for debugging. This
would allow the user to detect errors more easily.

5.2 Running P-KIMMO on the Macintosh computer

Though not a stand-alone application, the Macintosh version of P-
KIMMO provides the user with a menu-driven interface. Upon opening the
file named "MacKIMMO", " the user is given the screen with the Output
Window in figure 5.1.

r 4 File Windows Fonts Eual Compile Recognizer Generator 3:55 4k 3

Disinfectant 2.1

Mil I Output Window MMIMIIMEN

411
Toilet

Figure 5.1

The last three menus in the menu bar- -"Compile" , "Recognizer", and
"Generator"--are the ones created by MacKIMMO. The addition of these menus
has led to the suppression of other built-in menus. First, click on the
"Compile" pull-down menu which currently contains two data types--
"Engdata" (for English) and "Nippondata" (for Japanese). Figure 5.2 shows that
"Engdata" is selected from the "Compile" menu, which leads MacKIMMO to
compile the English automata and load the English lexicon. After the compila-
tion is done, a message will appear in the Output Window, as in figure 5.3.

1 1 MacKIMMO runs on LPA Mac PROLOG 3.0.

1 2

1 5

Compile Recognizer Generator
I

NipponData

Figure 5.2

- Output Window Pr=

Weleme to P-KIHMCIIII

Copyright <0 1991 by Kang-Hyuk Lee. All rights reserved.

to3

Figure 5.3

MacKIMMO is now ready to run. To test the recognizer, select "Surface
String..." from the "Recognizer" menu (Figure 5.4). Then the user is provided
with a dialog box for entering a string. On typing a surface string followed by
either the return key or a click on the OK button, the analyzed result is dis-
played in the Output Window, as illustrated in figure 5.5.

Recognizer
Sur face string....

Figure 5.4

1 3

1 6

(Cancel)

r File Windows Fonts Eual Compile Recognizer Generator 3:53 citi

Enter a string to recognize

dgingl

I Output Window

Welcome to P-Kinn011i

Copyrignt (c) 1991 by Kong -Hyvk Lee Ril rights reserved

Recognized string die+ing
Cotego-iss, troot, prl
Feature(s)* V PROG

No moors solutions

Figure 5.5

Dirlafectint 2.1

Toilet

The same goes for the generator. An illuscration is given in figures 5.6
and 5.7. Note that the generated string is displayed above the previously rec-
ognized string.

Compile Recognizer Generator
Lexical string...

Figure 5.6

17

1 4

(Cancel)

r 4 File Windows Fonts Eual Compile Recognizer Generator 3:55 41

Enter a string to generate

die+ind

Ok

I Output Window

Welcome to P-KIMM0111

Copyright (c) 1941 by Kong-Hyuk Lee All rights reserved

Generated String: dying

Recognized string
Categories
Feature(s)

NO more solutions

die+Ing
[root, prl
U PROD

Figure 5.7

18

15

Ditiftfiftint 2.1

Toilet

References

Alam, Yukiko Sasaki (1983) "A two-level morphological analysis ofJapanese", Texas Linguistic Forum, 22, 229-52.

Antworth, Evan L. (1990) PC-KIMMO: A Two-level processor for morpho-logical analysis, Summer Institute of Linguistics:Dallas, Texas.

Barton, Edward, Robert C. Berwick and Eric Sven Ristad (1987)Computational Complexity and Natural Language, MIT Press: Cambridge, MA.

Boisen, Sean (1988) "Pro-KIMMO: A prolog implementation of two-levelmorphology", Morphology as a Computational Problem, UCLA OccasionalPapers, 7, 31-53.

Forster, K. (1976) "Accessing the mental lexicon", in E.C.T. Walker andR.J.Wales eds.), New Approaches to Language Mechanisms, 257-287, North-Holland, Amsterdam.

Gajek, Oliver, Hanno T. Beck, Diane Elder and Greg Whittemore (1983)"Kimmo Lisp implementation", Texas Linguistic Forum, 22, 187-202.

Gerdeman, Dale and Erhard Hinrichs (1988) "UNICORN: A unificationparser for attribute-value grammars", Studies in Linguistic Sciences, 18(2), 41-86.

Karttunen, Lauri (1983) "KIMMO: A general morphological processor",Texas Linguistic Forum, 22, 165-186.

Karttunen, Lauri and Kent Wittenburg (1983) "A two-levelmorphological analysis of English", Texas Linguistic Forum, 22, 217-228.

Koskenniemi, Kimmo (1983) Two-level morphology: a general computa-tional model for word-form recognition and production, University ofHelsinki: Helsinki.

Koskenniemi, Kimmo (1985) "Compilation of automata from morphologi-cal two-level rules", Papers from the Fifth Scandinavian Conference ofComputational Linguistics, 143-149.

MA.
O'Keefe, Richard A. (1990) The Craft of Prolog, MIT Press: Cambridge,

16

1 9

APPENDIX

Source Listing of the P-KIMMO system

/**
**

** "The Recognition/Generation Algorithm"
**
**
** Copyright (C) 1991 Rang-Hyuk Lee
** All rights reserved.
**

**/

%%% Unlike previous implementations, there is no algorithmic
%%% distinction between recognition and generation in the P-KIMMO
%%% system. This is the result of taking advantage of non-
%%% deterministic programming technique inherent in Prolog.

recognize(Surface):-
statistics(runtime, _Now),
findall([Lexical, Cat_List, Feature_List],

transduce(Lexical, Surface, Cat_List, Feature_List),
Analyses), nl,

(Analyses == [] -> (nl, write('No solution Available'), nl)
I write_results(Analyses)),

statistics(runtime, [_Total, Since]),
Sincel is Since/1000,
write('RECOGNITION TIME = '),

write(Sincel),
write(' sec.'), nl.

%%% Note: Since transduce/4 is not embedded in finda11/3, the
%%% generator doesn't backtrack to see if there are more solutions
%%% as the recognizer does. To get all solutions, just put
%%% transduce/4 into finda11/3 as in recognize/1.

generate(Lexical):-
statistics(runtime, _Now),
transduce(Lexical, Surface, Cat_List, Feature_List),
write('Generated String: '),

write_output(Surface),
statistics(runtime, [_Total, Since]),
Sincel is Since/1000, nl,
write('GENERATION TIME
write(Sincel),
write(' sec.'), nl.

is_final([], []).
is_final([FinaliRest], [FinalListlRestFinals]):-

member(Final, FinalList),
is_final(Rest, RestFinals).

final([FinallRest]):-
finality([FinalListIRestFinals]),
is_final([FinallRest], [FinalListlRestFinals]).

18 21_

write_results([]).
write_results([[Lexical, Cat_List, Feature_ListflRest_Cat_Features]):-

write('Recognized String: '),

write_output(Lexical), nl,
write('Categories: '),

write(Cat_List), nl,
write('Feature(s): I),

write_feature(Feature_List), nl, nl,
write_results(Rest_Cat_Features).

write_output([]).
write_output([CharlRest_Char]):-

put(Char),
write_output(Rest_Char).

write_feature([]).
write_feature([FeaturelRest]):-

write_output(Feature), write("),
write_feature(Rest).

%%% transduce(Lexical_String, Surface_String,
List_of_Categories, Features)

%%%
Features: Bundle of features pertaining to categories

involved in the input string
%%%
transduce([Init_CharlRest_Lex_Char], [Init_CharIRest_Surf_Char],

[CatIRest_Cat], Features):-
initials(State),
lexicon(Cat, MInit_Char], Cont_Info, Rest_Char_and_Cont_Info)]),
move_automata(State,

[Init_CharlRest_Lex_Char],
[Init_Char Rest_Surf_Char],
MInit_Char], Cont_Info, Rest_Char_and_Cont_Info)],
Rest_Cat,
Features).

transduce(State, [], [], [Cont InfoIRest_Cont_Info], [], [Infol[]]):-
check_cont_list([Cont_InfoTRest_Cont_Info], [], Info, []),
final(State).

transduce(State, [Lex_Char], [Surf_Char],
[Cont_InfolRest_Cont_Info], [Cat], [InfoIInfo2]):-

check_cont_list([Cont_InfolRest_Cont_Info], Cat, Info,
[([Lex_Char], Cont_Info2,Rest_Char_and_Cont_Info)]),

find_arc([Lex_Char,Surf_Char], State, State2),
transduce(State2, [], [], Cont_Info2, [], Info2).

transduce(State, [Lex_CharIRest_Lex_Char], [],

[Cont_InfolRest_Cont_Info],
[CatIRest_Cat], [InfoIInfo2]):-

check_cont_list([Cont_InfolRest_Cont_Info], Cat, Info,
H[Lex_Char], Cont_Info2, [])]),

find_arc([Lex_Char,0], State, State2),
transduce(State2, Rest_Lex_Char, [], Cont_Info2, Rest_Cat, Info2).

BEST COPY AVAILABLE
19 22

%%% transduce(Current_State, Lexical, Surface,
Lexicon, Categories, Features)

%%% Lexicon: New lexical configuration to be used to process
the rest of the input string

%%%
transduce(State,

[Lex_CharlRest_Lex_Char],
[Surf_Char Rest_Surf_Char],
[Cont_Info Rest_Cont_Info],
(CatIRest_Cat],
[InfolInfo2]):-

check_cont_list([Cont_InfolRest_Cont_Info], Cat, Info,
[([Lex_Char], Cont_Info2,Rest_Char_and_Cont_Info)]),

move_automata(State,
[Lex_CharlRest_Lex_Char],
[Surf_CharlRest_Surf_Char],
H[Lex_Char], Cont_Info2, Rest_Char_and_Cont_Info)],
Rest_Cat,
Info2).

%%% move_automata(Current_State, Lexical_String, Surface_String,
%%% Lexicon, Category, Info).

Lexicon: current configuration of the lexicon
Category: list of categories

%%% Info: Grammatical information

move_automata(Statel,
[Lex_CharlRest_Lex_Char],
[Surf_CharlRest_Surf_Char],
Lexicon,
Cat,
Info):-

lexmatch([Lex_Char], Entry,
(([Lex_Char], Cont_Info, Rest_Char_and_Cont_Info))),

find_arc([Lex_Char,Surf_Char], Statel, State2),

% if Lex_Char does not have an entry
(Cont_Infcs == []
% process the next character pair
-> move_automata(State2,

Rest_Lex_Char,
Rest_Surf_Char,
Rest_Char_and_Cont_Info,
Cat,
Info)

% otherwise, i.e. if Lex_Char has an entry
% either do transduce/6

; (transduce(State2, Rest_Lex_Char,
Rest_Surf_Char,
Cont_Info, Cat, Info);

% if transduce/6 fails, go on to process the next pair.

20 23

% Even if a lexical character has an entry, that doesn't
% necessarily mean that the lexical string scanned by that
% time consititutes part of the input string. For example,
% consider the word "bite". After scanning "t" which has an
% entry, the parser will try to match the final character "e"
% with some character by looking up in another lexical item,
% which eventually fails. Therefore, the parser needs to
% backtrack in order to analyze "bite" as a single word.
move_automata(State2,

Rest_Lex_Char,
Rest_Surf_Char,
Rest_Char_and_Cont_Info,
Cat,
Info))).

move_automata(Statel,
[Lex_CharlRestLex_Char],
[Surf_CharlRest_Surf_Char]
Entry,
Cat,
Info):-

lexmatch([Lex_Charl, Entry,
[([Lex_Char], Cont_Info, Rest_Char_and_Cont_Info)]

find_arc([Lex_Char,0], Statel, State2), % e.g. "+0", "-0"
(Cont_Info == []
-> move_automata(State2,

Rest_Lex_Char,
[Surf CharlRest Surf_Char],
Rest_Char_and_Cont_Info,
Cat,
Info)

; (transduce(State2, Rest_Lex_Char,
[Surf ChariRest Surf Char],
Cont_Info, Cat, Info);

move_automata(State2,
Rest_Lex_Char,
[Surf ChariRest Surf_Char],
Rest_Char_and_Cont_Info,
Cat,
Info))).

lexmatch(Lex_Char,
[(Lex_Char,Cont_Info,Rest_Char_and_Cont_Info)I_],
[(Lex_Char,Cont_Info,Rest_Char_and_Cont_Info)]).

lexmatch(Lex_Char,
[_10ther_Lex_Char],
[(Lex_Char,Cont_Info,Rest_Char_and_Cont_Info)]):-

lexmatch(Lex_Char,
Other_Lex_Char,
[(Lex_Char,Cont_Info,Rest_Char_and_Cont_Info)]).

24
2 I

%%% Find transitions whose arc is labelled this pair

%%% find_arc(Pair, State_Listl, State_List2)
%%% State_Listl: list of outgoing states

State_List2: list of incoming states
%%%

find_arcHLex_Char,Surf_Char], [StatellRestl], [State2iRest2]):-
machine([Lex_Char,Surf_Char], List of_Lists),
all member([StatellRestl], [State2TRest2], List_of_Lists).

%%% all member(SL1, SL2, LSL): finds a transition rule by rule
%%% SL1: list of outgoing states

SL2: list of incoming states
LSL: list of state lists

%%% The number of LSL corresponds to that of
%%% morphological rules.

all memberrn, []).
all memberUStatellRestl], [State21Rest2], [ListIRestList]):-

member((Statel, State2), List),
all member(Restl, Rest2, RestList).

check_cont_list(([Cont, Info]
(Cent == #). % end of

check_cont_list(HCont, Info]
[([Lex_Char],

lexicon(Cat, (((Lex_Charl
check cont(Cont, Cat).

i_Rest_Cont]
string
i_Rest_Cont]
Cont_Info,
Cont Info,

, Cat, Info, []):-

, Cat, Info,
Rest_Char_and_Cont_Info)]):-
Rest Char and Cont Info)]),

%%% For a lexical items with mutiple entries
check_cont_list((_ContiRest_Cont], Cat, Info,

(([Lex_Char], Cont_Info, Rest_Char_and_Cont_Info))):-
check_cont_list(Rest_Cont, Cat, Info,

[([Lex_Char], Cont_Info, Rest_Char_and_Cont_Info)]).

check_cont(Cont, Cat):-
alternation(Cont, List_of_Alt),
member(Cat, List_of_Alt).

2 2

25

/**
**

** "MACHINE Compiler"
**

**

** Copyright (C) 1991 Kang-Hyuk Lee
** All rights reserved.
**

**

%%% The compiler converts automata (i.e transition tables that encode
%%% morphophonological rules) into different data structures, which
%%% the recognition-generation routine utilizes.
%%% The basic idea can be found in Gajek et al.(1983).
%%% Unlike Gajek et al., this compiler does not generate g-machine and
%%% r-machine. The single machine serves as both g- and r-machine.

initial(1).

compile:-
write('input file name? '),
read(File1),
compile(File1),
write('output file name? '),
read(File2),
tell(File2),
create_lit_pairs(All_Lit_Pairs),
assert(all_lit_pairs(All_Lit_Pairs)),
automata([[(RuleName, FinalStateList)1RestAutomaton] I RestAutomata]),
create_initials([[(RuleName, FinalStateList)

IRestAutomaton] RestAutomata],
Initials),

write(in!tials(Initials)), write('.'), nl,
compile_final([[(RuleName, FinalStateList)

IRestAutomaton] I RestAutomata],
FinalStateList, FinalList, AllFinals),

write(finality(AllFinals)), write('.'), nl,
change_automata([[(RuleName, FinalStateList)

IRestAutomaton]lRestAutomata],
[[(RuleName, FinalStateList)

INewRestAutomaton]iNewRestAutomata]),
make_machine([[(RuleName, FinalStateList)

INewRestAutomatonflNewRestAutomata],
[FirstPairlRestPairs]),

assert_automata([FirstPairlRestPairs]),
told.

2 6

2 3

%%% to create all possible character pairs of a given language
%%% They are used to instantiate schematic pairs such as "CC" and
%%%
create_lit_pairs(All_Lit_Pairs):-

alphabet(Alphabet),
make_alphabet_pairs(Alphabet, Alphabet_Pairs),
automata([AutomatonIRestAutomata]),
create_lit_pairs(RestAutomata, Rest_Pairs, Alphabet_Pairs),
append(Alphabet_Pairs, Rest_Pairs, All_Lit_Pairs).

%%% to produce all the "xx" character pairs from the alphabet of
%%% a language

make_alphabet_pairs([], []).
make_alphabet_pairs([[X]lY], HX,X]lZ]):-

make_alphabet_pairs(Y,Z).

11==11

%%% to produce the character pairs that are not the "xx" type but
%%% specified in the automata

create_lit_pairs([], [], Already_Pairs).
create_lit_pairs([[(RN,FSL)1Automaton] RestAutomata],

Conc_Pairs, Alphabet_Pairs):-
pick_pairs(Automaton, New_Pairs, Alphabet_Pairs),
append(Alphabet_Pairs, New_Pairs, Already_Pairs),
create_lit_pairs(RestAutomata, Rest_Pairs, Already_Pairs),
append(New_Pairs, Rest_Pairs, Conc_Pairs).

pick_pairs([], [], Already_Pairs).
pick_pairs([(Lit_Pair, StateList)IRest_Pairs],

NewPairs, Already_Pairs):-
% if the pair is a member of the list of pairs that was
% created from the alphabet, skip it.
member(Lit_Pair, Already_Pairs), I,

pick_pairs(Rest_Pairs, NewPairs, Already_Pairs).
pick_pairs([([Lex,Surf], StateList)IRest_Pairs],

NewPairs, Already_Pairs):-
% if the pair has either wildcard or a va.:able,
% skip it.
(((alphabet(any, [Lex]);

alphabet(any, [Surf]));
abbrev([Lex], Alphabetl));
abbrev([Surf], Alphabet2)), !,

pick_pairs(Rest_Pairs, NewPairs, Already_Pairs).
pick_pairs([(Lit_Pair, StateList)IRest_Pairs],

[NewPairlRestNewPairs], Already_Pairs):-
% otherwise, add this pair to the list of character pairs.
Lit_Pair = NewPair,
pick_pairs(Rest_Pairs, RestNewPairs, Already_Pairs).

%%% to create the initla. list [1,1,1,...] whose length corresponds
%%% to the number of aut ata

create_initials([], []),
create_initials([AutomatonRestAutomata], [11Rest]):-

create_initials(ResL xnata, Rest).

2 4

%%% to produce the final states of each automaton
%%%
compile_final(H, [], [], []).

compile_final(H(RuleName, FinalStateList)IRestAutomaton] RestAutomata],
FinalStateList, [StatellRestFinal], [Finals RestFinals]):-

1

initial(Statel),
compile_finality(FinalStateList,[StatellRestFinal], Finals),
compile_final(RestAutomata, FinalStateList2,

Pos_Num_List, RestFinals).

compile_finality([State], [FinalState], [X]):-
State == true,
X = FinalState.

compile_finality([State], [FinalState], []):-
State == false.

compile_finality([StateIRestState],
[FinalStatelI[FinalState2IRestFinal]],
[XIY]):-

FinalState2 is FinalStatel + 1,
State == true,
X = FinalStatel,
compile_finality(RestState,[FinalState21RestFinal],Y)

compile_finalityuStateIRestState],
[FinalStatell[FinalState2IRestFinal]],
X):-

FinalState2 is FinalStatel + 1,
State == false,
compile_finality(RestState,[FinalState2IRestFinal],X)

%%% Each automaton is processed by the recursive call of
%%% change_automata/2. All the schematic pairs such as "==" are
%%% instantiated by change_automaton/2 which calls the relevant
%%% clause (elsewhere/3 or replace_variable/3) depending on the
%%% pair to be processed.
%%%
change_automata([1, []).
change_automata([[(RN, FSL) RestAutomatonflRestAutomata],

[[(RN, FLS) SortedAutomaton]INewRestAutomata]):-
change_automaton(RestAutomaton, NewRestAutomaton,

[(RN, FSL)IRestAutomaton]),
mergesort(NewRestAutomaton, SortedAutomaton),
change_automata(RestAutomata, NewRestAutomata).

%%% to produces the final data structures (i.e. MACHINE) that the
%%% recognition/generation algorithm runs off.
%%% The description of MACHINE is given in section 3.3.

make_machine([[(RN,
make_machine([[(RN,

[(Lit_
make_machinel([

remove_pair([[(
([(

make_machine([[

FSLMIRest_RN_And_FSId, []).
FSL)I[(Lit_Pair, X)1Rest]] IRestAutomata],

Pair, [XIY])1RestPairs]):-
[(RN, FSL)I[(Lit_Pair, X)IRest]]1RestAutomata],
Lit_Pair, [XIY])),
RN, FSL)1[(Lit Pair, X)IRest]]1RestAutomata],
RN, FSL) Rest]TNewRestAutomata]),
(RN, FSL)IRest]INewRestAutomata], RestPairs).

25

28

make_machinel(H, (Lit_Pair, [])).
make machinel([[(RN, FSL)I[(Lit_Pair, X)IRest]]1RestAutomata],

(Lit_Pair, [XIY])):-
make_machinel(RestAutamata, (Lit_Pair, Y)).

remove_pair([],[]).
remove_pair([[(RN, FSL)I[(Lit_Pair, X)IRest]]1RestAutomata],

[[(RN, FSL)1Rest] INewRestAutomata]):-
remove_pair(RestAutomata, NewRestAutomata).

assert_automata([]).
assert_automata([(Lit_Pair, StateList)IRestPairs]):-

write(machine(Lit_Pair, StateList)), write('.'), nl,
assert_automata(RestPairs).

change_automaton([], [], Automaton).
change_automaton([("==", StateList)],

[(Else_Lit_Pair, Arcs)IRestArcs], Automaton):-
elsewhere(("==", StateList), Automaton,

[(Else_Lit_Pair, StateList)1RestPairs]),
else_list_arcs([(Else_Lit_Pair, StateList)IRestPairs],

[(Else_Lit_Pair, Arcs)IRestArcs]),
change_automaton(M, [], Automaton).

change_automaton([(Var_Pair, StateList)IRest], All, Automaton1):-
replace_variable((Var_Pair, StateList), Automatonl,

[(Replaced_Pair, StateList)1RestPairs]),
else_list_arcs([(Replaced_Pair, StateList)IRestPairs],

[(Replaced_Pair, Arcs)IRestArcs]),

% to update the automaton to prevent the Elsewhere condition
% from being applied to the instantiated literal pairs
delete_pair(Automatonl, (Var_Pair, StaceList), Automaton2),
append(Automaton2, [(Replaced_Pair, StateList)1RestPairs],

Automaton3),

change_automaton(Rest, Rest Lit_Pairs, Automaton3),
conc([(Replaced_Pair, Arcs)TRestArcs], Rest_Lit_Pairs, All).

change_automaton([(Lit_Pair, [State2])IRest],
[(Lit_Pair, [(Statel,State2)])1RestArcs], Automaton):-

initial(Statel),
change_autamaton(Rest, RestArcs, Automaton).

change_automaton([(Lit_Pair, [State21[State41RestStates]])IRest],
[(Lit_Pair, Arcs)INewRest], Automaton):-

initial(Statel),
list_arcs(Statel, [State21[State4IRestStates]], Arcs),
change_automaton(Rest, NewRest, Automaton).

else_list_arcs([], []).
else_list_arcs([(Else_Lit_Pair, StateList)IRest],

[(Else_Lit_Pair, Arcs)IRestArcs]):-
initial(Statel),
list_arcs(Statel, StateList, Arcs),
else_list_arcs(Rest, RestArcs).

29
26

%%% As described in section 3.2, an outgoing state is implicit in
%%% the sequential order of a state list. This is what "State2 is
%%% Statel + 1" in list_acrs/3 is all about.
%%%
list_arcs(Statel, [State2], [Arc]):-

State2 =\= 0,
Arc = (Statel,State2).

list_arcs(Statel, [State2], []):-
State2 == 0.

list_arcs(Statel, [State21[State4IRestStates]], [ArcIRestArcs]):-
State3 is Statel + 1,
State2 =\= 0,
Arc = (Statel,State2),
list_arcs(State3, [State41RestStates], RestArcs).

list_arcs(Statel, [State21[State4IRestStates]], Arcs):-
State3 is Statel + 1,
% the incoming state is 0 (i.e. failure),
% don't add this state pair to MACHINE.
State2 == 0,
list_arcs(State3, [State4IRestStates], Arcs).

%%% Instantiate the "==" pair

elsewhere((Lit_Pair, StateList), [(RN,FSL)IAutomaton],
[(Else_Lit_Pair, StateList)IRestPairs]):-
all_lit_pairs([XIY]),
assert(statelist(StateList)),
remove_spec([XIY], Automaton,

[(Else_Lit_Pair, StateList)1RestPairs]),
retract(statelist(StateList)).

%%% Replace a variable pair by the corresponding pairs
%%% e.g. "VV", "CC", "SS", etc.

replace_variable(([Var,Var], StateList), Automaton,
[(Spec_Pair, StateList)1RestPairs]):-

abbrev([Var], Alphabet),
make_pairs(Alphabet, Alphabet_Pairs),
assert(statelist(StateList)),
remove_spec(Alphabet_Pairs, Automaton,

[(Spec_Pair, StateList)1RestPairs]),
retract(statelist(StateList)).

%%% e.g. "V=", "C=", etc.
%%%
replace_variable(([Var,Wild], StateList), Automaton,

[(Spec_Pair, StateList)IRestPairs]):-
abbrev([Var], Alphabet),
[Wild] ==
all_lit_pairs([XIY]),
make_else_pairs2(Alphabet, [X1Y], Else_Pairs),
assert(statelist(StateList)),
remove_spec(Else_Pairs, Automaton,

[(Spec_Pair, StateList)IRestPairs]),
retract(statelist(StateList)).

3)
27

%%% Constant-Any pair
%%% e.g. "+=", "t=", etc

replace_variable(([Cons,Var], StateList), Automaton,
[(Spec_Pair, StateList)1RestPairs]):-

[Var] == "=",

make_else_pairs(Cons, [X1Y], Else_Pairs),
assert(statelist(StateList)),
remove_spec(Else_Pairs, Automaton,

[(Spec_Pair, StateList)IRestPairs]),
retract(statelist(StateList)).

%%% Variable-Constant pair

replace_variable(([Var,Cons], StateList), Automaton,
[(Spec_Pair, StateList)1RestPairs]):-

abbrev([Var], Alphabet),
make_pairs(Alphabet, Alphabet_Pairs),
make_else_pairsl(Cons, Alphabet_Pairs, Else_Pairs),
assert(statelist(StateList)),
remove_spec(Else_Pairs, Automaton,

[(Spec_Pair, StateList)1RestPairs]),
retract(statelist(StateList)).

%%% Constant-Variable pair
%%% e.g. "+C"

replace_variable(([Cons,Var], StateList), Automaton,
[(Spec_Pair, StateList)1RestPairs]):-

abbrev([Var], Alphabet),
make_pairs(Alphabet, Alphabet_Pairs),
make_else_pairs(Cons, Alphabet_Pairs, Else_Pairs),
assert(statelist(StateList)),
remove_spec(Else_Pairs, Automaton,
[(Spec_Pair, StateList)1RestPairs]),
retract(statelist(StateList)).

make_pairs([], []).
make_pairs([[X]1Y], [[X,X]1Z]):-

make_pairs(Y, Z).

make_else_pairs(A, [], []).

make_else_pairs(A, [[X,Y]1Z], [PairIRestPairs]):-
A == X, !, % in case "Lex" is a variable
[X,Y] = Pair,
make_else_pairs(A, Z, RestPairs).

make_else_pairs(A, [[X,Y]IZ], Pairs):-
make_else_pairs(A, Z, Pairs).

make_else_pairsl(A, [], []).

make_else_pairsl(A, [[X,Y] Z], [PairlRestPairs]):-
A == Y, !, % in case "Surf" is a variable
[X,Y] = Pair,
make_else_pairsl(A, Z, RestPairs).

make_else_pairsl(A, [[X,Y]IZ], Pairs):-
make_else_pairsl(A, Z, Pairs).

31
28

make_else_pairs2([], All, []).
make_else_pairs2([[A]1B], [XIX], Else_Pairs):-

make_else_pairs(A, [XIY], Else_Pairs1),
make_else_pairs2(B, [X1Y], Else_Pairs2),
conc(Else_Pairsl, Else_Pairs2, Else_Pairs).

32

% The termination condition has been complicated a bit
% due to the non-correspondence of else pairs to all pairs
remove_spec([], Automaton, (1).
remove_spec([X], Automaton, []):-

is_specified(X, Automaton).
remove_spec([X], Automaton, [(Else_Lit_Pair, ElseStateList)]):-

statelist(ElseStateList),
X = Else_Lit_Pair,
remove_spec(M, Automaton, []).

% If the literal pair is specified in the automaton, do nothing.
% Otherwise, add the pair to the new automaton
remove_spec([XIY], Automaton, ElsePairs):-

is_specified(X, Automaton), !,

remove_spec(Y, Automaton, ElsePairs).
remove_specUX1Y], Automaton,

[(Else_Lit_Pair, ElseStateList)IRest]):-
statelist(ElseStateList),
X=
remove_spec(Y, Automaton, Rest)

% Think of it as the member/2 predicate
is_specified(Lit_Pair, [(Lit_Pair, StateList)1RestAutomaton]).
is_specified(X, [(Lit_Pair, StateList)IRestAutomaton]):-

is_specified(X, RestAutomaton).

29

/**
**
** The English Lexicon
**
**/

alternation(in, [c1]).
alternation(v, [p3, ps, pp, pr, i, ag, ab]).
alternation(ivl, [pr, i, ag, ab]).
alternation(1v2, [p3, pr, i, ag, ab]
alternation(a, [pa, ea, cs ,ly]).
alternation(#, []).
alternation(Cat, [Cat]).

lexicon(n, [0], Hcl, "N SG"fl).
lexicon(n, "+s", [[c2, "N PL"]]).
lexicon(mn, [0], [[cl, "MASS N"]]).
lexicon(cl, [0], [[#, ""]]).
lexicon(cl, "'s", [[#, "GEN"]]).
lexicon(c2, [0], [[#, ""]]).
lexicon(c2, "", [[#, "GEN"]]).
lexicon(p3, "+s", [[#, "V PRES SG 3RD"]]).
lexicon(ip3, [0], [[#, "V PRES 3RD SING"]]).
lexicon(ps, "+ed", [[#, "V PAST"]]).
lexicon(ips, [0], [[#, "V PAST"]]).
lexicon(pp, "+ed", [[#, "V PAST PRT"]]).
lexicon(ipp, [0], [[#, "V PAST PRT"]]).
lexicon(pr, "+ing", [[#, "V PROG"]]).
lexicon(i, [0], [[#, "V"]]).
lexicon(ipl, [0], ([#, "V PRES SING, 1ST"]]).
lexicon(ag, "+er", [[n, "AG"]]).
lexicon(pa, [0], [[#, "A"]]).
lexicon(ca, "+er", [[#, "A COMP"]]).
lexicon(cs, "+est", [[#, "A SUP"]]).
lexicon(ly, "ly", [IP, "ADV"]]).
lexicon(ab, "+able", [f#, "VERB ABL"]]).

lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,

"are", [[#, "V PRES SING 2ND"]])
"at", [[#, "PREP"]]).
"a-ttack", [[n, "], [v, ""]]).
"be", [[#, "AUX"], [ivl, ""]]).
"beer", [[n, ""]]).
"believe", [[v, ""]]).
"big", [[a, ""]]).
"bit", Hips,]]).
"bite", ([iv2, ""]]).
"bitten", [[ipp, ""]]).
"boo", [[v, ""]]).
"boy", [[n, ""]]).
"cacti", [(in, "N PL"]]).
"cactus", [[in, "N SG"]]).
"cat", Un, ""]]).
"church", [[n, ""]]).
"cool", f(a, ""]]).
"day", Un, ""]]).
"did", t[ips,
"die", [(v, ""]]).
"do", ((ivl, ""])).

33
3 0

BEST COPY AVAILABLE

lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexioon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,
lexicon(root,

"does", [[ip3,
"done", [[ipp, ""]]).
"fox", Hn, ""]]).
"go", [[ivl, ""]]).
"goes", [[ip3, ""]]).
"gone", [[ipp, ""]]).
"grouch", Hn, ""]]).
"had", [[#, "Mac], [ips, ""])).
"has", [[#, "AUX"], [ip3, ""]]).
"have", Hi, "AUX"], [ivl, ""]]).
"ice", [[mn, ""]]).
"industry", [[n, ""]]).
"is", [(iP3, ""]]).
"kill", [[v, ""]]).
"kiss", Hn, ""],[v, ""]]).
"mice", Hin, "N PL"]]).
"milk", [[mn, ""]]).
"mouse", [[in, "N SG"]]).
"move", [[v, "]]).
"oc-cur", [[v, "1]).
"race", Hv, "],[n, ""]]).
"rally", [[n, ""]]).
"refer-ee", [[v, ""],[n, ""]]).
"re-fer", [[v, ""]]).
"ski", [[n, ""]]).
"sleep", [[iv2, ""]]).
"slept", [[ipp, ""], [ips, ""]]).
"ePY", Hn, "3, [v,
"tie", [[v, ""]]).
"tiptoe", [[v, ""]]).
"toe", Hn, ""]]).
"travel", Hn, "3, [v, ""]]).
"trY", [[v, "1]).
"un", [[root, "NEG"]]).
"under-stand", [[iv2, ""]]).
"understood", Hipp, ""], [ips, ""]]).
"undid", [[ips, ""]]).
"undo", [[ivl, ""]]).
"undoes", [[ip3, ""]]).
"undone", Hipp, ""]]).
"untie", Hv, ""]]).
"went", [[ipp, ""]]).

/**
**
** The English Automata
* *

%%% This file contains the finite state automata which encode six
%%% morphophonological rules in English, as described in Karttunen and
%%% Wittenburg (1983).

alphabet([''alt,111),11c11,11d1t,fiell,11flt,flgn,flhlt,Ilin,IlilylkU,11111,11m11,11n11,11011,
np",11,411,11r11,11s11/Ift",11u11,11v11,11w",11x11/11y11/11z11,11101,[0]]).

alphabet(any, "=").
abbrev("V",["a","e","i","0","u"]).
abbrev(Hclt,[19011,11c11,11d11,11f11,11g11,111111,11j11,11k11/1t111,11m11,1Inn,

11p11,11qH,11r0,11s11,Ht11,.v11,1IVI,Hx11,11y1f,11z11]).

abbrev("S",["s","x","z"]).

automata([[(surface, [true]),
([0,0], [1]),
("aa", [1]),
("bb", [1]),
("cc", [1]),
("dd", [1]),
("ee", [1]),
("ff", [1]),
("gg", [1]),

[1]),

("ii", [1]),
("jj", [1]),
("kk", [1]),
("11", [1]),
("mm", [1]),
("nn", [1]),
("oo", [1]),

("pp", [1]),

("qq", [1]),
("rr", [1]),
("ss", [1]),
("tt", [1]),
("uu", [1]),
("vv", [1]),

("ww", [1]),
("xx", [l]),

("YY", [1]),
("zz", [1]),
(""", [1]),
("="=", [1])],

[(i_spelling, [true,false,false,false,true,true,false]),
("iy", [2,0,0,0,1,0,0]),
([101,0], [1,3,0,0,1,1,0]),
([43,0], [1,0,4,0,1,7,0]),
("ii",
("ee",
("==", [1,0,0,0,1,1,1])],

35
3 2

[(elision, [true,true,true,false,true,false,false,false,false,
false,true,false,false,true,true]),

("VV", [2,1,1,0,1,0,1,1,0,0,1,0,0,1,1]),
("ii", [2,1,1,0,1,0,1,1,0,0,1,0,1,1,0]),
("ee", [3,5,5,0,1,0,0,1,0,1,14,0,1,1,0]),
([101,0], [4,6,6,0,4,0,0,0,0,0,12,0,0,0,0]),
([43,0], [1,1,9,8,7,10,0,0,0,0,1,13,0,15,1]),
("gg", [11,11,11,0,11,0,1,0,1,0,1,0,0,11,11]),
("cc", [11,11,11,0,11,0,1,0,1,0,1,0,0,11,11]),
("bb", [5,1,5,0,1,0,1,0,1,0,1,0,0,1,1]),
("==", [1,1,1,0,1,0,1,0,1,0,1,0,0,1,1])],

[(epenthesis, [true,true,true,true,false,true]),
("cc", [2,2,2,2,0,1]),
("hh", [1,3,1,3,0,1]),
("ss", [4,3,3,3,1,0]),
("SS", [3,3,3,3,0,1]),
("Yi", [3,3,3,3,0,1]),
("+e", [0,0,5,5,0,11),
([430], [1,1,6,6,0,1]),
("=="., [1,1,1,1,0,1])],

[(gemination, [true,false,true,true,true,true,true,true,true,
true,true,true,trueltrue,true,true]),

("VV", [4,1,0,16,16,16,16,16,16,16,16,16,16,16,16,16]),
("bb", [1,0,0,5,16,16,16,16,16,16,16,16,16,16,16,16]),
("dd", [1,0,0,6,16,16,16,16,16,16,16,16,16,16,16,16]),
("ff", [1,0,0,7,16,16,16,16,16,16,16,16,16,16,16,16]),
("gg", [1,0,0,8,16,16,16,16,16,16,16,16,16,16,16,16]),
("11", [1,0,0,9,16,16,16,16,16,16,16,16,16,16,16,16]),
("ram", [1,0,0,10,16,16,16,16,16,16,16,16,16,16,16,16]),
("nn", [1,0,0,11,16,16,16,16,16,16,16,16,16,16,16,16]),
("pp", [1,0,0,12,16,16,16,16,16,16,16,16,16,16,16,16]),
("rr", [1,0,0,13,16,16,16,16,16,16,16,16,16,16,16,16]),
("ss", [1,0,1,14,16,16,16,16,16,16,16,16,16,16,16,16]),
("tt", [1,0,0,15,16,16,16,16,16,16,16,16,16,16,16,16]),
("+b", [0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0]),
("+d", [0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0]),
("+f", [0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0]),
("+g", [0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0]),
("+1", [0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,01),
("+m", [0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0]),
("+n", [0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0]),
("+p", [0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0]),
("+r", [0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0]),
("+s", [0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0]),
("+t", [0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0)),
([43,0], [1,0,0,1,3,3,3,3,3,3,3,3,3,3,3,16]),
([96,0], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]),

[1,0,0,16,1,1,1,1,1,1,1,1,1,1,1,16])],

3 6

3 3

[(y_spelling, [true,true,false,false,true,false]),
("CC", [2,2,0,1,1,03),
("yy", [1,5,0,1,1,0]),
("yi", [0,3,0,0,0,0]),

[1,1,4,1,6,0]),
("ii", [1,1,0,0,1,1]),
("aa", [1,1,0,0,1,1]),
("==", [1,1,0,1,1,0])]]).

37

3 4

/***
**
**
**
***/

Utilities

%%% This file contains some utility functions used by the compiler.

delete_pair([], []):- !.

delete_pair([KillITail], Kill, Rest):-
delete_pair(Tail, Kill, Rest).

delete_pair([HeadITail], Kill, [HeadlRest]):-
delete_pair(Tail, Kill, Rest).

%%% This sorting program is basically the same as in Shieber and
%%% Pereirra (1986) except that a few minor changes have been added
%%% to the "merge" clauses.
%%%
mergesort([], []).
mergesort([A], [A]).
mergesort([A,B Rest], Sorted):-

split([A,B Rest], Ll, L2),
mergesort(L1, SortedL1),
mergesort(L2, SortedL2),
merge(SortedLl, SortedL2, Sorted).

sPlit(H, []).
split([A], [A], []).

split([A,BIRest], [AIRestA], [BIRestB]):-
split(Rest, RestA, RestB).

merge(A, [], A).
merge([], B, B).
merge([([Lexl,Surfl],S1) RestAs], [

[([Lexl,Surfl],S1) Merged]):-
Lexl+Surfl < Lex2+Surf2,
merge(RestAs, [([Lex2,Surf2],S2

merge(k[Lexl,Surfl],S1)1RestAs], [

[([Lex2,Surf2],S2) Merged]):-
Lex2+Surf2 < Lexl+Surfl,
merge([([Lexl,Surfl],S1)IRestAs

merge(P[Lexl,Surfl],S1)1RestAs], [

[([Lexl,Surfl],S1) Merged]):-
Lex2+Surf2 =:= Lexl+Surfl,
Lexl < Lex2,
merge(RestAs, '[([Lex2,Surf2],S2

merge(U[Lexl,Surfl],31)1RestAs], [

[([Lex2,Surf2] ,S2) Merged]):-
Lex2+Surf2 =:= Lexl+Surfl,
Lex2 < Lexl,
merge(N[Lexl,Surfl],S1)IRestAs

([Lex2,Surf2],S2)IRestBs],

)IRestBs], Merged).
([Lex2,Surf2],S2)IRestBs],

], RestBs, Merged).
([Lex2,Surf2],S2)IRestBs],

)IRestBs], Merged).
([Lex2,Surf2] ,82)IRestBs],

], RestBs, Merged).

3 5

